ASTD: Arabic Sentiment Tweets Dataset
نویسندگان
چکیده
This paper introduces ASTD, an Arabic social sentiment analysis dataset gathered from Twitter. It consists of about 10,000 tweets which are classified as objective, subjective positive, subjective negative, and subjective mixed. We present the properties and the statistics of the dataset, and run experiments using standard partitioning of the dataset. Our experiments provide benchmark results for 4 way sentiment classification on the dataset.
منابع مشابه
2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework
Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...
متن کاملMining Sentiments from Tweets
Twitter is a micro blogging website, where users can post messages in very short text called Tweets. Tweets contain user opinion and sentiment towards an object or person. This sentiment information is very useful in various aspects for business and governments. In this paper, we present a method which performs the task of tweet sentiment identification using a corpus of pre-annotated tweets. W...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملPreprocessing Egyptian Dialect Tweets for Sentiment Mining
Research done on Arabic sentiment analysis is considered very limited almost in its early steps compared to other languages like English whether at document-level or sentence-level. In this paper, we test the effect of preprocessing (normalization, stemming, and stop words removal) on the performance of an Arabic sentiment analysis system using Arabic tweets from twitter. The sentiment (positiv...
متن کاملDetecting sentiment embedded in Arabic social media - A lexicon-based approach
Sentiment analysis aims at extracting sentiment embedded mainly in text reviews. The prevalence of semantic web technologies has encouraged users of the web to become authors as well as readers. People write on a wide range of topics. These writings embed valuable information for organizations and industries. This paper introduces a novel framework for sentiment detection in Arabic tweets. The ...
متن کامل